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Abstract. Qualitative Reasoning (QR) is a reasoning framework for
simulating physical behavior based on naive knowledge of the phys-
ical system. However, it is not easy to build a model of the physical
system based on physical laws and principles. Therefore, example-
based model libraries are used to support the creation of a model.
This approach requires extensive knowledge to represent a variety
of physical systems. If suitable components are not prepared for a
problem, new components must be added to the library.

Therefore, the main focus of this work was on developing a
method to utilize Large Language Model (LLM) to solve this prob-
lem. Although LLM alone doesn’t have the architecture necessary
to perform QR, it performs well at discovering information such
as physical phenomena and objects related to the problem if a so-
phisticated prompt can be prepared. To this end, we proposed a new
model construction method using LLM as a tool to extract the frag-
mentary information. This information is used as a key to access the
previously prepared database to get the physical parameter relations
based on physical laws and principles. We introduce and validate this
framework using a simple motion example that considers both spring
motion and friction.

1 Introduction
Qualitative Reasoning (QR) is a reasoning framework for simulat-
ing physical behavior based on naive knowledge about the physical
system. Qualitative Process Theory (QPT) [2] is one of the methods
that uses knowledge about qualitative relationships between physical
parameters. This method is good at representing the physical system
using generalized concepts such as physical phenomena [4] and an-
chor concepts [3]. This framework can simulate the physical system
well if the user succeeds in creating an appropriate model for the
system. However, although the system provides a basic vocabulary
to construct a model of the physical system, it is not easy to con-
struct a model using these vocabularies. Therefore, the utilization of
example-based model libraries such as physical feature(PF) [4] and
subclass of anchor concepts [3] has been proposed in the literature.
This approach requires a good amount of knowledge to represent va-
rieties of physical systems.

Recently, Large Language Models (LLMs) such as ChatGPT2 are
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used in various tasks. LLMs are trained on a large variety of docu-
ments and can predict physical behavior based on the trained knowl-
edge. However, the quality of the result of this prediction is not good
enough because LLMs are trained only on the textual contexts and
generate statistically plausible text, not correct reasoning [3]. How-
ever, based on the preliminary analysis of LLM and considering that
they are trained on a large number of texts containing descriptions of
a variety of physical systems, they can be used as a retriever to make
a list of the related physical laws and principles for the given situ-
ations. Therefore, a new framework for qualitative reasoning model
construction using LLM was proposed here. In this framework, the
description of the physical system is provided as text, and LLM helps
to collect general model fragments and relationships among them to
support the model construction process. By using this framework,
we assumed that the size of the knowledge for describing varieties of
physical systems used in the previous methods can be reduced. We
introduce and validate this framework using a simple motion exam-
ple that considers spring motion and friction.

2 Model Construction for Qualitative Reasoning

Although the knowledge used for qualitative reasoning is general and
reusable, it is necessary to construct a model for behavioral simu-
lation. Therefore, Kiriyama et al. [4] proposed to use physical fea-
tures(PFs) that represent typical physical systems with related phys-
ical phenomena. The Knowledge Intensive Engineering Framework
[7] supports the construction of a model for qualitative reasoning by
combining these building blocks. Nonetheless, it is necessary to cre-
ate example-based libraries to represent the variety of components
used in the physical system. Anchor concepts [3] also have a similar
problem for model construction. For example, the "motion" has 355
subclasses to represent different situations. It is desirable to have a
general framework for constructing a model based on an understand-
ing of the physical system configuration.

Recently, it has been demonstrated that LLMs can perform well in
various tasks. So LLMs’ ability for QR has been experienced (e.g.
for design [5] and spatial reasoning [1]). As Forbus says [3], their
success criterion is the generation of statistically plausible text, not
correct reasoning. On the other hand, LLM can entail possible physi-
cal phenomena that occur on the given physical system configuration
(e.g., sliding entails the possibility of friction). This feature was used
here to support the QR model construction.
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Table1 summurize the comparison of Kiriyama, Forbus, and our
method. Primitive concepts are atomic representation of physical be-
havior.

3 A New Model Construction Method
LLMs perform well at gathering information about cases that are
similar to a given physical system configuration. However, their abil-
ity to combine this information varies. For example, they excel at
tasks such as gathering and then comparing information about two
subjects, namely A and B, a process that can be expressed using a
chain of thought (CoT) [6]. However, they are not necessarily good at
solving problems that require synthesizing multiple pieces of knowl-
edge based on first principles, such as estimating behavior based on
physical knowledge. To address this issue, this study exploits the
LLM’s ability to skillfully gather case-related information by collect-
ing data related to objects, processes, and physical parameters. This
information is then used in a framework that employs a QR model to
infer behavior. The output of the LLM can also be viewed as infor-
mation that solves the problem of creating case-specific PFs needed
to describe when certain physical phenomena occur.

This method exploits the strengths and compensates for the weak-
nesses of LLMs. In this research, we used ChatGPT (GPT-4) to solve
a problem involving the motion of a single particle on a frictional
constraint surface, without dealing with specific numerical values.

To construct the proposed method, we created a database for QR
with physical laws and principles (Figure 1). This database stores the
physical laws and principles corresponding to each process, and fur-
ther contains physical parameters related to these laws and principles,
along with their qualitative temporal changes and constraints. By ex-
tracting the process names from the output of LLM, the associated
physical laws and principles are compiled with their corresponding
physical parameters and relationships, instantiated on a per-object
basis. In this step, due to the variations of description about physi-
cal laws and principles generated by LLM, we manually rewrite the
description for finding out the data stored in the database.

This instantiation details the relationships between the generic
physical parameters defined in the process for the specific object,
thereby creating a physical parameter network used to construct the
model.

Figure 1. Database of Physics Laws and Principles for Qualitative Reason-
ing

The proposed method suggests a three-step approach for building
the model and inferring behavior (Figure 2).

(1) Analysis of Physical Problems Using LLM to extract neces-
sary information such as objects, processes, and missing physical
parameters from the text of physical problems.

(2) Construction of a Physical Parameter Network Using the
process names as keys to access corresponding physical laws and
principles from a database of physical laws and principles for

QR, instantiate the qualitative time-varying relationships between
the associated physical parameters for each object, and construct
a physical parameter network.

(3) Calculation of System State Transitions Obtain the initial val-
ues of the physical parameters from the LLM. And based on these
initial values and the qualitative time-varying relationships be-
tween the physical parameters, calculate the possible state tran-
sitions.

The following sections explain this method with a practical ex-
ample. The problem addressed is "The spring attached to the wall
was pulled sufficiently in the opposite direction of the wall and then
released along the rough floor". See Appendix A for details on the
prompt and output used for ChatGPT. Information for the next step
are manually extracted from the output.

Figure 2. Proposed framework of Qualitative Reasoning

3.1 Analysis of a Physical Problem

We enter the text about a physical problem with an instruction prompt
to LLM for identification of physical system configuration (objects
and their contact states) and a list of physical phenomena that oc-
curred in the system. This instruction prompt is designed for extract-
ing such information based on the flow described in Figure 3.

The details of the procedure are as follows. First, the objects ap-
pearing in the problem are recognized and it is determined whether
their motion conforms to a constraint surface, such as a floor. If the
motion is along a constraint surface, the axis and slope are deter-
mined by checking whether the constraint surface is a slope, for ex-
ample. Next, it detects how the objects are in contact with the con-
straint surface, whether vertically or horizontally. Then it extracts the
information corresponding to the process. With these steps, a prompt
template for analyzing the basic information of the problem is cre-
ated and entered into ChatGPT along with the problem being han-
dled. From the example input, the output was able to extract objects
such as a spring and a wall, and a horizontal floor as a constraint
surface. However, the wall is considered immobile and is not treated
as an object. Similarly, processes such as Constraint surface move-
ment, Friction movement, and Spring movement were applicable as
inferred from the content obtained.

Figure 3. Procedure of analyzing problem



Table 1. Comparison of the Physical feature, Anchor concepts, and the Proposed method

Kiriyama et. al., 1992 [4] Forbus 2023 [3] proposed method(Ours)
Primitive Concepts Physical Phenomena Anchor concepts Physical Phenomena

Example Based Components Physical feature Subclass of Anchor concepts
Difficulty of Model Construction Easy Easy Supported by LLM

Size of Knowledge Base Large Large Small

3.2 Construction of the Physical Parameter Network

A physical parameter network is constructed from the information
obtained.

3.2.1 Generation of Relationships Between the Physical
Parameters

Using the process names obtained from the analysis of the physics
problem as keys, access is made to a pre-created database of physical
laws and principles for QR (Figure 1). Based on the physical laws and
principles associated with the processes, the qualitative time-varying
relationships of the physical parameters are instantiated for each ob-
ject.

In addition, forces are automatically aggregated by component
along each axis. If information is missing, such as the conditions
under which static friction occurs, ChatGPT is queried, and from the
output, the action of static friction is defined. In this case, it corre-
sponds to the restoring force of the spring.

Thus, for the example problem, a physical parameter network has
been created concerning the qualitative time-varying relationships
of instantiated physical parameters (Figure 4). However, due to the
complexity, the constraints are omitted.

Figure 4. Physical parameter network

3.3 Calculation of System State Transitions

This section explains the method used to determine the system’s state
transitions by setting the initial values of the physical parameters in
addition to the information from the physical parameter network cre-
ated through the above processes. In this study, the values of the
physical parameters are qualitative and indicate one of three direc-
tions: +, 0, or -.

3.3.1 Obtaining Initial Value Information

To get the initial value information of the physical parameters, we
design CoT prompt for extracting initial value. In this prompt, we
ask LLM to provide the information about the axis of motion, the
origin, and the definition of positive and negative directions, first.
Then, using CoT, we re-identify the problem, identify the axis and
origin, positive and negative directions, and list the initial values for
position and velocity. Next, we can list the acting forces. If friction
is present, distinguish between static and dynamic friction and select
the appropriate one, then re-list the acting forces, and list the resul-
tant force and acceleration. A prompt containing these instructions is

typed into ChatGPT to obtain initial values, and the output was ob-
tained. From this output, the initial values of the physical parameters
for the example problem were set.

For this example text "The spring attached to the wall was pulled
sufficiently in the opposite direction of the wall and then released
along the rough floor", the system extract the initial values as fol-
lows; Position (+), Velocity (0), Acceleration (-), Resultant Force(-),
Dynamic Friction (0), Static Friction (+), Reaction of Static Friction
(-), Spring Force (-).

3.3.2 Envisioning

çlabelsec:envisionning Based on the obtained physical parameters,
their qualitative temporal changes and initial values, an envisioning
simulation of state transitions through QR is performed by a QPT-
based simulator.

In the simulation results (Figure 5), each node in the diagram rep-
resents the state of the system at each point in time (Detail of the
initial state and each states are shown in Appendix B). The orange
node on the right represents a positive position, the yellow-green
node in the middle represents the origin (the natural length of the
spring), and the light blue node on the left represents a negative po-
sition. The edges represent the direction of the state transitions, and
the state represented by the central red label indicates the final state.
The resulting state transitions are mainly counterclockwise including
periodic behavior of simple harmonic motion and transitions to a rest
state due to friction.

Figure 5. State Transition Diagram

4 Conclusion

In this research, we proposed a framework for the construction of a
QR model using physical phenomena and relationships between the
objects collected from text provided by the LLM. This model inte-
grates first principles such as physical laws and principles to simulate
the behavior. The operation of the framework was demonstrated us-
ing simple harmonic motion on a friction plane as an example. In the
future, various challenges should be addressed including extending
the knowledge of the physical laws and principles and applying the
system to problems involving other physical phenomena. In addition,
there is a need to build an end-to-end framework and provide feed-
back information on the state transitions of the inference results to



the LLM, which could extend the range of potential applications to
generating explanations.
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A Prompt and output of the system
A.1 Prompt1

System message
Please consider the following "movement" within the scope of high
school physics.
Please identify the following materials related to the movement of
the following "movement”.
Please answer in the form of an itemized list for each of the follow-
ing materials.
Please consider the Earth’s gravity.
Please do not output any text other than the requested materials. Sys-
tem message end
Movement
The spring attached to the wall, stretched sufficiently, is about to start
moving along the rough floor in the opposite direction of the wall,
having been released.
Movement end
Materials

• objects: List all objects featured in the movement.
• is constraint surface movement: Please determine whether it is

a motion along the constraint surface.
• constraint surface: List names and angles (flat, slope upward,

slope downward, vertical etc..) of the constraint surface, if it ex-
ists.

• constraint surface objects: Extract objects from “constraint sur-
face” that are not part of objects in “objects”.

• objects and constraint surface objects: Combine “objects” and
“constraint surface objects” into a bullet-point list.

Materials end

A.2 Output1

Materials

• objects:

– Spring

– Wall

• is constraint surface movement: Yes
• constraint surface:

– Floor (flat)

• constraint surface objects:

– Floor

• objects and constraint surface objects:

– Spring

– Wall

– Floor

Materials end

A.3 Prompt2

Explain concisely what kind of motion will occur based on physical
laws and principles for each object.
Let’s think step by step about this logically.

A.4 Output2

When the spring, attached to the wall and stretched on a rough floor,
is released, the following motion occurs based on physical laws and
principles:

• Elastic Potential Energy to Kinetic Energy: The stretched
spring holds elastic potential energy. Upon release, this energy
converts into kinetic energy, causing the spring to move.

• Motion Against Friction: The spring moves on a rough floor, in-
dicating the presence of friction. This friction opposes the motion
of the spring, gradually reducing its kinetic energy.

• Oscillatory Motion: The spring will likely undergo oscillatory
motion (back and forth) due to its elastic nature, until all its kinetic
energy is dissipated through friction and internal damping within
the spring.

• Effect of Gravity: Earth’s gravity acts vertically downwards, but
since the motion is horizontal on a flat surface, gravity primarily
affects the normal force between the spring and the floor, which
in turn influences the frictional force.

Overall, the motion involves a conversion of elastic potential en-
ergy to kinetic energy, oscillatory movement, and energy dissipation
due to friction and internal damping, within the constraints of gravi-
tational and frictional forces.

A.5 Create Physical parameter Network

The following can be interpreted from these outputs.

• objects:

– Spring

• constraint surface:
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– Floor (flat)

• Physical phenomena:

– Constraint surface movement

– Spring movement

– Friction

Then, access the database and create a physical parameter network
(Figure: 4). However, since the restoring force of the spring is insuf-
ficient this time, inquire with the LLM.

A.5.1 Prompt

What force acts as the reaction to static friction?

A.5.2 Output

The reaction to static friction is the force exerted by an object against
the surface it is in contact with. In the context of the spring attached to
the wall and moving on a rough floor, when static friction is acting to
prevent the spring from starting its motion, the reaction to this static
friction is the elastic force (restoring force) exerted by the stretched
spring in the direction away from the wall. This force is trying to
move the spring across the floor, and the static friction is what re-
sists this motion. According to Newton’s third law of motion, for
every action, there is an equal and opposite reaction. Thus, the force
the spring exerts against the floor to move forward is matched by
an equal and opposite force from the static friction preventing that
motion.

A.5.3 Add information

Therefore, set the static friction force as the restoring force of the
spring.

A.6 Prompt3

Direction

• origin: Point at the natural length of the spring
• positive direction: Away from the wall from the origin.
• negative direction: Toward the wall from the origin.

Direction end

List the initial signs of the physical parameters based on the “Di-
rection”.

1. Step 1: Check the “Movement”.
2. Step 2: Check the “Direction”.
3. Step 3: List the initial values of Position, Velocity.
4. Step 4: List all added forces for each object.
5. Step 5: If friction is applied, distinguish static friction and dy-

namic friction, and reconsider which is applied.
6. Step 6: List the initial values of all added Forces.
7. Step 7: List the initial values of resultant forces and Acceleration.

A.7 Output3

Based on the "Movement" and the defined "Direction", let’s list the
initial signs of the physical parameters:

• Step 1: Movement - A spring attached to a wall, stretched suf-
ficiently, and about to start moving along the rough floor in the
opposite direction of the wall, having been released.

• Step 2: Direction -

– Positive Direction: Away from the wall.

– Negative Direction: Toward the wall.

• Step 3: Initial Values of Position and Velocity -

– Position: Positive (since the spring is stretched away from the
wall).

– Velocity: Zero initially (at the moment of release, the spring is
momentarily stationary).

• Step 4: Added Forces for Each Object -

– Spring: Elastic force (restoring force), frictional force (due to
the rough floor), and gravitational force.

– Wall: Reaction force exerted by the spring.

– Floor: Normal force exerted by the spring.

• Step 5: Friction - Initially, static friction applies (as the spring
is just about to move). Upon movement, it transitions to dynamic
(kinetic) friction.

• Step 6: Initial Values of all Added Forces -

– Elastic force: Negative (restoring force towards the wall).

– Static friction: Zero initially (since the spring is not yet mov-
ing), but it will be positive (opposing the motion away from the
wall).

– Gravitational force: Neutral in terms of direction (acts down-
wards, perpendicular to the direction of spring’s motion).

– Normal force: Neutral in terms of direction (acts perpendicular
to the motion).

• Step 7: Initial Values of Resultant Forces and Acceleration -

– Resultant force on the spring: Initially negative (due to the
restoring elastic force).

– Acceleration: Initially negative (the spring accelerates towards
the wall due to the restoring force).

B States generated by the envisioning system
Followings are description of the states generated by the envisioning
system.

Init The length of the spring is longer than the normal length and it
starts accelerating towards the wall (acceleration = -, velocity = 0,
position = +).

State1 The length of the spring is longer than the normal length and
it starts accelerating towards the wall and it starts moving towards
the wall (acceleration = -, velocity = -, position = +).

State2 The acceleration is 0 because the force of the spring and the
dynamic friction force are balanced (acceleration = 0, velocity =
-, position = +).

State3 The acceleration direction changes because the dynamic fric-
tion force is greater than the spring force (acceleration = +, veloc-
ity = -, position = +).



State4 The length of the spring becomes the normal length (accel-
eration = +, velocity = -, position = 0).

State5 The length of the spring is shorter than the normal length and
moves towards the wall (acceleration = +, velocity = -, position =
-).

State6 The length of the spring is shorter than normal and stops
(acceleration = +, velocity = 0, position = -).

State7 The length of the spring is shorter than normal and is moving
away from the wall (acceleration = +, velocity = +, position = -).

State8 The acceleration is 0 because the spring force and the dy-
namic friction force are balanced (acceleration = 0, velocity = +,
position = -).

State9 The acceleration direction changes because the dynamic fric-
tion force is greater than the spring force (acceleration = -, velocity
= +, position = -).

State10 The length of the spring becomes the normal length (accel-
eration = -, velocity = +, position = 0).

State11 The length of the spring is longer than the normal length
and moves away from the wall (acceleration = -, velocity = +,
position = +).

State12 Length of spring is longer than normal length and stops
(spring force and static friction force are balanced)

State13 Length of spring is normal length and stops (spring force
and static friction force are balanced)

State14 Length of spring is shorter than normal length and stops
(spring force and static friction force are balanced)
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