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Abstract. Kolmogorov-Arnold networks (KANs) are neural net-
works that work by fitting a composition of simple univariate func-
tions. They present several advantages with respect to perceptrons;
in particular, they are capable of learning fully symbolic equations,
thus generating inherently interpretable models. However, these sym-
bolic representations are not generally easily human-understandable.
Through a simple use case, we show how we can use qualitative tech-
niques to find intuitive explanations for KAN-learned models. We
show how KANs and qualitative techniques are complementary, and
propose future avenues of research.

1 Introduction
Kolmogorov-Arnold Networks (KANs) [7] have recently emerged
as a hot topic in the field of neural networks. KANs are based in the
Kolmogorov-Arnold representation theorem [5], that states that any
continuous multivariate function can be represented as a finite sum
of continuous univariate functions and their compositions. Leverag-
ing this theoretical foundation, Kolmogorov-Arnold Networks aim to
decompose complex, high-dimensional functions into more manage-
able univariate components, thereby enhancing both interpretability
and computational efficiency.

In the current landscape of Artificial Intelligence techniques, this
approach promises several important advantages: firstly, KANs can
be more parameter-efficient than an equivalent multi-layer percep-
tron. KANs are particularly useful in applications where the relation-
ship between input variables is intricate and nonlinear. By breaking
down these relationships into simpler, univariate functions, KANs
can effectively capture the underlying patterns with fewer parame-
ters, reducing the risk of overfitting. Furthermore, the modular nature
of KANs allows for easier adaptation and extension, making them
suitable for a wide range of tasks from regression and classification
to more complex domains such as time-series prediction [9] and im-
age processing [2].

Secondly, they can produce explainable results, since in principle
it’s possible to fit functions with a symbolic interpretation. This has
motivated a flurry of applications where KANs are used to learn pro-
cesses which can be modeled as relatively straightforward physics-
informed equations. From our point of view this is particularly im-
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portant, since traditional neural network architectures, while power-
ful, often operate as black boxes. In response, the field of Explainable
Artificial Intelligence (XAI) [8] has emerged to study how to open
these black boxes, which has important technical, ethical and legal
implications. KANs are potentially very useful tools in that regard,
as an approach which is both technically robust and interpretable in
principle.

However, the fact that KANs are able to generate symbolic
functions does not mean that these functions are readily human-
interpretable. For that reason, we seek to introduce qualitative rea-
soning approaches into the KAN framework. Qualitative reasoning
focuses on understanding and modeling the behavior of systems
without relying solely on quantitative data, providing a complemen-
tary perspective that emphasizes the relationships and constraints in-
herent in the data. By combining KANs with qualitative reasoning,
we can develop models that not only perform well but also provide
deeper insights into the underlying mechanisms of the phenomena
being studied.

The main goal of this paper is to present ideas on how KANs and
qualitative techniques can be applied together, with a focus on Ex-
plainable AI. We will use a case study in which we use KANs to learn
a simple color transformation in images, and we will use a qualitative
theory to provide an intuitive explanation of the result, which com-
plements the symbolic formula learned by the KAN. We will then
discuss possible avenues of research for further integration of KANs
and qualitative approaches.

The paper is structured as follows. Section 2 briefly introduces the
motivating case study and how it is solved by using KANs. Section
3 shows how we can use qualitative techniques — in particular, the
Qualitative Color Description (QCD) theory — to provide an intu-
itive explanation of the model learned by the KAN. Finally, Section
4 discusses potential areas of research, and the paper ends with some
brief conclusions.

2 KANs: Motivating example

2.1 Brief introduction to KANs

The Kolmogorov-Arnold representation theorem [5] states that if f is
a multivariate continuous function on a bounded domain, then it can
be written as a finite composition of continuous functions of a single



variable using addition. More formally, for a smooth f : [0, 1]n → R

f(x) = f(x1, ..., xn) =

2n+1∑
q=1

Φq(

n∑
p=1

ϕq,p(xp))

,
where ϕq,p : [0, 1] → R and Φq : R → R.
Several of these compositions can be combined as layers, thus cre-

ating a Kolmogorov-Arnold Network (KAN) of arbitrary depths and
widths. In each edge of a KAN, there is a univariate function that
is fitted to the training data. Thus, a suitable family of basis func-
tions must be selected; the original implementation uses B-splines,
but other options are certainly possible. In the next section we show
how KANs work with an example.

2.2 Motivating example: Reconstructing watermarked
images with a KAN

To illustrate the use of KANs, we’ll use a very simple digital image
processing example. Consider the process of watermarking images
using a mask. For example, Figure 1 shows a sample photograph,
and Figure 2 a watermarked version using a simple mask. Our task is
to learn the transformation between the masked pixels in the original
photograph and the corresponding ones on the watermarked image.

Figure 1. Original image

This transformation is better defined in a color model such as HSV
(Hue-Saturation-Value), which uses human-understandable concepts
rather than uninterpretable RGB values. Thus, after transforming the
image to HSV, we learn three separate KANs, where each takes as
input three separate values (H, S, V) and outputs the transformed
Hue, Satutation and Value respectively. We try to keep the KANs as
simple as possible, using the smallest network that provides a good
result. Other than that, we do not perform any kind of hyperparameter
optimization on the KANs. The implementation is done in Python
using the PyKAN package.2

The learned KAN for Hue is shown in Figure 3. It’s a three-layer
KAN with three inputs and one output, and the fitted component
functions are displayed.

PyKAN uses B-splines as basis functions. After the initial splines
are fitted, it’s possible to fit a well-known symbolic function that is
approximated by these splines. For instance, the bottom-left function

2 https://github.com/KindXiaoming/pykan

Figure 2. Watermarked image

Figure 3. Trained KAN for Hue, showing the learned B-spline functions

can be interpreted as a polynomial, and the function to the left as a
trigonometric function such as sine or cosine. The best-fitting func-
tion, if any, is selected from a set of well-known candidate functions.
After this step, the KAN is retrained with the new component func-
tions. This allows the creation of a fully symbolic representation for
the result. In this case, the resulting function is

0.9− 0.17
∣∣−0.07 (0.77− xV )3 − 0.04 sin (4.63xS + 0.81)− 23.09 tanh (0.25xH − 0.05) + 4.15

∣∣
where xH , hS and hV represent the input hue, saturation and value

respectively. Note that, while symbolic, this can hardly be considered
to be a human-friendly explanation of the model, even though it is ar-
guably better in that respect than just having the weights of a neural
network. To be fair, in this case it should be certainly possible to
achieve a simpler expression by using more training data and a bit of
hyperparameter tuning, but our point is that the fact that KANs can
produce a symbolic expression does not automatically mean that the
result is readily understandable by humans. Incidentally, the expres-
sion obtained for the Value KAN is slightly simpler, while the one
for the Saturation is far more complex.

Figures 4 and 5 show the learned KANs for Saturation and Value
respectively. The learning metrics are reasonable: from about 60000
pixels in the training set, we achieve test RMSE values of beteeen
0.01 and 0.05, which are good enough for this simple case. The
KANs train in a few minutes on a Macbook without special GPU
support.

Thus, with these three KANs, we are able to fully specify the trans-



Figure 4. Trained KAN for Saturation

Figure 5. Trained KAN for Value

formation from the color of a pixel in the original image to its corre-
sponding one in the watermarked version. However, it’s not clear at
all that this result is explainable to humans. In the following section
we show how we can use a qualitative color model to better under-
stand this result.

3 Improving interpretability with a qualitative
model

3.1 The QCD model

The QCD model [3] defines a reference system in the HSL color
space (a variant of HSV) for qualitative color description, which is
built according to Figure 6 and defined as:
QCRS = {uH, uS, uL,QCNAME1..5, QCINT1..5}
where uH is the unit of Hue; uS is the unit of Saturation; uL is

the unit of Lightness; QCNAME1..5 refers to the color names; and
QCINT1..5 refers to the intervals of HSL coordinates associated with
each color. The chosen QCNAME and QCINT are:
QCNAME1 = {black, darkgrey, grey, lightgrey, white}
QCINT1 ={[0, 20), [20, 30), [30, 50), [50, 75), [75, 100)

∈ uL | ∀uH ∧ uS ∈ [0, 20]}
QCNAME2 ={red, orange, yellow, green,

turquoise, blue, purple, pink}

Figure 6. QCD color model

QCINT2 ={(335, 360] ∧ [0, 20], (20, 50], (50, 80], (80, 160],

(160, 200], (200, 260], (260, 300], (300, 335]

∈ uH | uS ∈ (50, 100] ∧ uL ∈ (40, 55]}
QCNAME3 ={pale-red, pale-orange, pale-yellow,

. . . , pale-blue, pale-purple, pale-pink}
QCINT3 = {∀QCINT2 | uS ∈ (20, 50] ∧ uL ∈ (40, 55]}
QCNAME4 ={light-red, light-orange, light-yellow, . . . ,

light-blue, light-purple, light-pink}
QCINT4 = {∀QCINT2 | uS ∈ (50, 100] ∧ uL ∈ (55, 100]}
QCNAME5 ={dark-red, dark-orange, dark-yellow, . . . ,

dark-blue, dark-purple, dark-pink}
QCINT5 = {∀QCINT2 | uS ∈ (50, 100] ∧ uL ∈ (20, 40]}
In summary, the QCD defines two set of basic color labels (one

monochromatic, one chromatic), which can be combined with “ad-
jectives” (dark, light, pale) that capture meaningful variations in sat-
uration and lightness in an intuitive way.

3.2 QCD interpretation of the KAN model

We can use the QCD to provide a qualitative interpretation of the
transformation learned by the KANs. For each pixel in the origi-
nal image which is covered by the watermarking mask, we compute
the corresponding color as transformed by the learned KAN model.
Then, we find the QCD label of both colors, thus obtaining a qual-
itative version of the mapping from the original to the watermarked
colors. The results are shown in Table 1. The label on left side of the
arrow represents the color in the original image, and the label on the
right side represents the corresponding color on the watermarked im-
age. Note that the mapping is not always one to one; in some cases,



some qualitative colors on the original image map to different quali-
tative labels in the watermarked image.

Table 1. Mapping of QCD colors under the watermarking transformation

black 7→ grey
dark_green 7→ light_grey
dark_grey 7→ grey|light_grey
dark_yellow 7→ light_grey
grey 7→ light_grey
light_blue 7→ white
light_green 7→ white
light_grey 7→ white|light_grey
light_red 7→ light_red|white|light_grey
light_yellow 7→ white|light_grey
pale_blue 7→ light_grey
pale_green 7→ light_grey
pale_red 7→ light_grey
pale_yellow 7→ light_grey
white 7→ white

Note how, in this case, some patterns are obvious:

• First of all, by using a qualitative representation the color la-
bels are immediately understandable. For example, RGB coordi-
nates (1, 0.14, 0.19) or HSV coordinates (357 deg, 0.85, 1), and
all perceptually similar sections of the color space are just referred
to by the natural language label “red”.

• By examining the table, we can see that the transformation corre-
sponds to a “lightening” of the colors, transforming dark colors to
their light versions, and converting light colors to white in some
cases. Thus, the interpretation becomes immediately obvious.

• Also note that some colors are transformed to labels in the gray
scale. This corresponds to a well-known feature of the human vi-
sion system, modeled by the QCD, in which very muted colors are
perceived as gray (i.e. their chromatic hue is lost), even though if
we examine the quantitative coordinates of such colors the hue is
unchanged.

• Finally, note how these descriptions correspond to the way in
which a human would describe the difference between the wa-
termarked image and the original one. The watermarked areas are
normally thought of as “whitened”, “lightened” or “muted” with
respect to the original version.

These reasons illustrate why qualitative representations are an ex-
cellent fit for model explainability in general. And, in this particular
case, they provide a natural complement to the symbolic expressions
learned by the KAN.

4 Discussion: enhancing the interpretability of
KANs with qualitative techniques

In the previous section we have shown how a qualitative represen-
tation can be used to provide an intuitive explanation of the result
of a model. This is called a post-hoc explanation, and it can cer-
tainly be applied to models other than a KAN. However, KANs have
some specific properties that make them especially interesting to be
used in combination with qualitative techniques. Here we provide
two promising examples:

First of all, remember that KANs depend on a suitable family of
basis functions to be fitted. In the base implementation we have used
in this paper, these functions are B-splines. However, in principle
many other function basis are possible; some that have been recently
tried are e.g. radial basis functions [6] and wavelets [1]. While using

qualitative functions directly is not possible since they are not dif-
ferentiable, it is indeed possible to use some basis functions that are
more readily interpretable in a qualitative way, such as fuzzy basis
functions [4].

Another aspect in which qualitative approaches are potentially
useful is as constraints. It’s possible to incorporate constraints to
guide the training of the a KAN; this has been used, for example, to
incorporate physical knowledge into the system. Of course, there is
a long tradition in the field of qualitative reasoning of defining qual-
itative theories to be used in this way, and in principle it should be
possible to incorporate domain knowledge into KAN training using
qualitative reasoning techniques.

We consider that these aspects are promising avenues of research
that combine the strengths of KAN and qualitative reasoning tech-
niques.

5 Conclusion
In this paper we have introduced Kolmogorov-Arnold networks, and
how they can be used to obtain symbolic approximations of func-
tions. After applying them to a simple case study, we have seen how
these symbolic formulas can be hard to interpret. As a solution, we
have applied the QCD qualitative color theory to find an intuitive
explanation of the result. Finally, we have introduced several topics
for further research: finding basis functions which are suitable for
generating qualitative interpretations, and the incorporation of qual-
itative constraints into the training process. We consider that KANs
and qualitative approaches are complementary approaches, and that
these directions of research may provide useful results.
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