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Abstract 

In this paper, we focus on how the qualitative 

vocabulary of Dynalearn, which is used for 

describing dynamic systems, corresponds to the 

mathematical equations used in quantitative 

modeling. Then, we demonstrate the translation of a 

qualitative model into a quantitative model, using 

the example of an object falling with air resistance. 

1 Introduction 

Understanding the behaviour of dynamic systems (e.g., 
climate change, economic growth and recession, population 
dynamics) is an important goal in secondary education. 
Educational developments that strive for future-oriented 
curricula emphasize this and consider practices such as causal 
reasoning and modelling as important skills.  

Modelling is widely recommended as a way to provide 
learners with a deeper understanding of dynamic systems [1]. 
Modelling of a dynamic system on the computer can be done 
both qualitatively and quantitatively. Both forms can and are 
used in education [2, 3], but largely independent of each 
other. Both forms of modelling have their unique ways of 
representing and reasoning about system behaviour. As 
learning tools, each has its own pedagogical approach and 
offers distinct advantages and downfalls for understanding 
systems [4, 5, 6, 7]. Quantitative modelling allows for precise 
predictions and is closely aligned with the content of various 
school subjects such as gravitational acceleration (physics), 
predator-prey relationships (biology), the pig cycle 
(economics), and global warming (geography). Qualitative 
modelling, on the other hand, aligns more closely with the 
human reasoning about systems and emphasizes causality 
and the potential states of a system [8]. It also allows for 
automated support [2]. 

Education will benefit from a software solution and 
corresponding pedagogical approach that supports the 
strengths of both modelling forms. The software should 
integrate qualitative and quantitative representations of a 
system. If learners construct a qualitative model, the software 
can assist in translating it into a quantitative model, which 
learners often find challenging. Conversely, moving from 

quantitative to qualitative helps to verify whether the 
constructed quantitative model assumes plausible causal 
relationships. This approach also aligns with 
recommendations from the scientific community [9]. It is 
important to note that such software does not yet exist, and 
that the potential impact of this innovation could extend to 
many other sectors in society. 

In this paper, we focus on how qualitative representations 
of dynamic systems in Dynalearn [10] relate to mathematical 
equations. Chapter 2 begins by outlining the qualitative 
vocabulary of Dynalearn. We then discuss in Chapter 3 how 
dynamic systems can be quantitatively described using 
mathematical equations. A considerable portion of this paper, 
Chapter 4, is dedicated to examining the relationships 
between the qualitative vocabulary of Dynalearn and the 
corresponding mathematical equations. Following this, we 
use the dynamics of an object falling with air resistance as a 
case study in Chapter 5 to demonstrate the translation of a 
qualitative model into a quantitative model. The paper 
finalizes with a conclusion and discussion in Chapter 6. 

2 Qualitative modelling 

Qualitative representations provide a framework for 

modelling dynamic systems without relying on numerical 

data. The Dynalearn software facilitates the construction of 

these models at five distinct levels of complexity, each 

introducing new ingredients to accommodate a more nuanced 

description of system dynamics. In this paper we focus on 

level 4. Hence, this section discusses the ingredients of the 

Dynalearn software at that level. 

Entities are either physical objects or abstract concepts, 

characterized by one or more quantities—changeable 

features of entities, such as temperature or speed. Each 

quantity has a derivative, denoted as δ, indicating its direction 

of change: decreasing, constant, or increasing. Quantity 

spaces define the possible states of the system by determining 

the range of possible values for each quantity, represented as 

alternating point and interval values. Correspondences (C) 

can be added to co-occurring values to further determine the 

possible states of the system. The relationships between 

quantities are described by two types of causal relationships: 
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influence and proportionality. A causal relationship is of type 

influence (I) when an active process, indicated by a quantity, 

is the primary cause of a change in another quantity. This 

relationship can be either positive (I+) or negative (I−), 

depending on the directionality of the effect initiated by the 

process. When the relationship is of type positive, a positive 

value of the process results in an increase of the related 

quantity, while a negative value results in a decrease. In cases 

of a negative influence, a positive value of the process causes 

a decrease in the related quantity, and a negative value causes 

an increase. Causal relationships of type proportionality (P) 

describe how changes in one quantity lead to corresponding 

changes in another quantity, either in the same direction (P+) 

or in opposite directions (P−). Exogenous influences are 

external factors that have a continuous effect on the change 

of a quantity. In the present paper we restrict to exogenous 

influences that are either decreasing, constant, or increasing. 

The behaviour of the system can be further described by 

(in)equalities, which set ordinal relationships between 

quantities (<, ≤, =, ≥, >). Calculi allow the execution of 

qualitative operations such as addition and subtraction. 

Simulation within Dynalearn starts with a scenario: the 

initial settings that define the starting conditions of the model. 

From these settings, a state graph is generated, visually 

representing the possible states and transitions of the system. 

Learners can use this graph to explore and understand the 

behaviour of the system by navigating through different 

states. Simulation preferences can be adjusted so that the 

underlying Garp 3 reasoning engine [11] accounts for 

possible changes in the first derivative of a quantity (i.e., the 

second derivative), potentially leading to new states or 

transitions. Value and inequality history offer an overview of 

the changes, values and (in)equality of quantities throughout 

the simulation. 

3 Quantitative modelling 

In the case of quantitative modelling in secondary education, 
mathematical equations are used to describe and analyse how 
systems evolve over time. These models typically use 
differential equations, linear equations, and nonlinear 
equations to describe system dynamics. 

The differential equation 𝑦(𝑡 + 𝛥𝑡) = 𝑦(𝑡) + 𝑚 ⋅ 𝑥(𝑡) ⋅ 𝛥𝑡 
describes how the value of a function 𝑦 at time 𝑡 + 𝛥𝑡 is 
derived from its value at a previous time 𝑡 by adding an 
increment that depends on the constant 𝑚, the value of 𝑥(𝑡), 
and the time step 𝛥𝑡. This formulation uses Euler's method, a 
finite difference approach commonly used in simulations to 
approximate the solutions of differential equations. Note, that 
𝑥(𝑡) itself is a function of time, and its behavior directly 
influences the behavior of 𝑦(𝑡). For example, if 𝑥(𝑡) > 0 and 
constant, then 𝑦(𝑡) increases linearly. Conversely, if 𝑥(𝑡) 
increases linearly (e.g., 𝑥(𝑡) = 𝑚𝑡), then 𝑦(𝑡) exhibits 
quadratic growth as each increment added to 𝑦(𝑡) increases 
over time. We use Euler here for keeping things simple, 
though other numerical methods like the Runge-Kutta 4 
(RK4) are also commonly employed for more accuracy and 

stability. Numerical analysis for solving differential 
equations is crucial when analytical solutions are not feasible. 

Relationships between quantities in a dynamic system can 
often be described using linear equations, such as 𝑦(𝑡) = 𝑚 ⋅
𝑥(𝑡) ± 𝑏, where 𝑚 represents the slope and 𝑏 is the 𝑦-
intercept, indicating the value of 𝑦 when 𝑥 = 0. Here, 𝑥(𝑡) 
denotes the value of 𝑥 at time 𝑡. It's important to note that 𝑦(𝑡) 
exhibits linear behavior relative to 𝑥(𝑡); however, the overall 
behavior of 𝑦(𝑡) in terms of time depends on the behavior of 
𝑥(𝑡). Specifically, 𝑦(𝑡) will only show constant behaviour if 
𝑥′(𝑡) = 0 (i.e., if 𝑥(𝑡) is constant over time). For example, in 
modelling a dynamic system that describes the behaviour of 
gases, the relationship between temperature and pressure is 
typically linear under constant conditions. 

Non-linear equations describe scenarios in dynamic 
systems where quantities appear as exponents, products, or 
other non-linear combinations. For example, the non-linear 
equation 𝑦(𝑡) = −𝑚 ⋅ 𝑥(𝑡)2 + 𝑏 illustrates how the intensity of 
light, 𝑦(𝑡), diminishes with the square of the distance, 𝑥(𝑡), 
from a point source as an object moves away over time. 

After defining the equations of the dynamic system, a 
simulation can be initiated. Initial values for the variables 
must be set, along with the duration of the simulation and the 
size of each time step. The values of each quantity are then 
calculated for each time step using an integration method, 
such as Euler's method.  

4 Qualitative vocabulary and mathematical 

equations 

In this chapter, we describe how ingredient types of the 
qualitative vocabulary relate to mathematical equations. For 
clarity, when referring to quantities in qualitative 
representations, we use x, y, z without the time notation t and 
use the δ symbol to indicate their direction of change. When 
discussing mathematical equations, we denote these 
quantities as 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) to specify that they are functions 
of time, and we use the prime notation to discuss the direction 
of change of these quantities, for example, 𝑥′(𝑡). For 
discussing time steps, we use the notation 𝛥𝑡, and 𝑚 and 𝑏 are 
used in equations to denote the slope and intercept, 
respectively. 

4.1 Exogenous influence, change, and quantity 

space 

Fig. 1 presents a qualitative representation of quantity x with 
quantity space {0, +} and an increasing exogenous influence 
acting on it. The initial value of x is zero (0). The simulation 
result shows two consecutive states: in the first state, x is zero 
and increasing (δx > 0), and in the second state (shown), x is 
positive (+) and continues to increase. The mathematical 
equation corresponding to the value of x is 𝑥(𝑡 + 𝛥𝑡)  =
 𝑥(𝑡)  +  𝑥′(𝑡) ⋅ 𝛥𝑡. The quantity space of x defines the range 
as 𝑥(𝑡)  ≥  0. Given that δx is increasing linearly, 𝑥′(𝑡)  >  0 
and remains constant. Conversely, for a constant exogenous 
influence, 𝑥′(𝑡)  =  0 and remains constant, while for a 
decreasing exogenous influence, 𝑥′(𝑡)  <  0 and remains 
constant. 
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 Hence, to transition from a qualitative model to a 
quantitative one, if the exogenous influence on a variable is 
increasing or decreasing, then the numerical value of 𝑥′(𝑡) 
must be provided. Additionally, if the initial setting of x starts 
at an interval, then the initial numerical value of 𝑥(𝑡), namely 
𝑥(0), must also be specified. Furthermore, the value of 𝛥𝑡 also 
needs to be set. 
 

 
Fig. 1. An increasing exogenous influence acting on quantity x 

with quantity space {0, +}.The right side shows the state-graph 

starting with the scenario followed by two consecutive states. 

The left side shows the model and the simulation result of the 2nd 

state (in green). 

4.2 Causal relationships 

Fig. 2 shows a qualitative representation with a positive 
proportional relationship (P+) between quantities x and y, 
with an increasing exogenous influence acting on x. The 
simulation result demonstrates that as x increases, y also 
increases.  

 

Fig. 2. Positive proportional relationship between x and y. 
 
Assuming a linear relationship between x and y, the general 
mathematical expression corresponding to this is 𝑦(𝑡)  =  𝑚 ⋅
𝑥(𝑡)  ±  𝑏, and the derivative is 𝑦′(𝑡) = 𝑚 ⋅ 𝑥′(𝑡). Given the 
positive proportional relationship, the value of m must be 
greater than 0. Conversely, for a negative proportional 
relationship holds 𝑚 < 0. The value of b can be any real 
number (b ∈ ℝ), as there are no quantity spaces defined for x 

and y that dictate how the values of x and y are related. For 
further discussion on the latter, see paragraph 4.3. 

Fig. 2 could also depict a non-linear positive proportional 
relationship between x and y, for example dose-response 
relationship of a certain drug (Fig. 3). 
 

 
Fig 3. Non-linear positive proportional relationship between 

dose and response. 
 
When accounting for non-linear positive proportional 
relationships, the qualitative representation in Fig. 2 could be 
described by any mathematical equation whose first 
derivative is always greater than zero. For example, consider 
the equation 𝑦(𝑡)  =  𝑥(𝑡)3  +  3𝑥(𝑡). Following the chain rule, 
the derivative is 𝑦′(𝑡)  =  3𝑥(𝑡)2 ⋅ 𝑥′(𝑡)  +  3𝑥′(𝑡). If 𝑥′(𝑡)  >  0 
and remains constant, then 𝑦′(𝑡)  >  0, which indicates that 
𝑦(𝑡) is a strictly increasing function of 𝑥(𝑡). 
 

 
Fig. 4. Positive and negative proportional relationship. The left 

side shows the model and the simulation result of state 1 (in 

green). 

 
Fig. 4 shows a qualitative representation where x has a 

positive proportional relationship with y, and z has a negative 
proportional relationship with y; both x and z are increasing 
due to an increasing exogenous influence. When simulation 
preferences are set to only consider first changes in the first 
derivative, the simulation result is ambiguous with three 
possible final states. In state 1, y is decreasing (δy < 0); in 
state 2 (not shown), y is constant; and in state 3 (not shown), 
y is increasing. The general mathematical equation describing 



 

4 

 

the change in y, considering a linear relationship between z, 
x, and y, that corresponds to this representation is 𝑦′(𝑡) = 𝑚1 ⋅
𝑥′(𝑡) − 𝑚2 ⋅ 𝑧′(𝑡). Note the minus sign indicates that 𝑧(𝑡) has 
a negative proportional relationship with 𝑦(𝑡). The 
ambiguous simulation result arises not only because 𝑚1 and 
𝑚2 are unknown but also because 𝑥′(𝑡) and 𝑧′(𝑡) are not 
specified. For example, if 𝑦’(𝑡)  = 3𝑥’(𝑡) –  4𝑧’(𝑡), and 𝑥′(𝑡) is 
less than 4/3 times 𝑧′(𝑡), then 𝑦(𝑡) is decreasing (𝑦′(𝑡) < 0). 
However, if 𝑥′(𝑡) is equal or larger than 4/3 times 𝑧′(𝑡), then 
𝑦(𝑡) is constant or increases. Table 1 shows numerical 
examples over a time step that illustrate the impact of 
different ratios of 𝑥′(𝑡) and 𝑧’(𝑡) on 𝑦’(𝑡)  = 3𝑥’(𝑡) –  4𝑧’(𝑡). 
The table demonstrates that if the ratio between 𝑥′(𝑡) and 𝑧’(𝑡) 
is 1, then 𝑦’(𝑡) < 0; if the ratio is 4/3, then 𝑦’(𝑡) = 0; and if the 
ratio is 2, then 𝑦’(𝑡) > 0. 
 

Table 1. The impact of different ratios of x’(t) and z’(t) on y’(t). 
 

𝑦’(𝑡)  = 3𝑥’(𝑡) –  4𝑧’(𝑡) 

 𝑥′(𝑡)  =  1 

 𝑧’(𝑡)  =  1 

𝑥′(𝑡)  =  1 

 𝑧’(𝑡) =  3/4 

𝑥′(𝑡)  =  2 

 𝑧’(𝑡)  =  1 

t 𝑥′(𝑡) 𝑧’(𝑡) 𝑦’(𝑡) 𝑥′(𝑡) 𝑧’(𝑡) 𝑦’(𝑡) 𝑥′(𝑡) 𝑧’(𝑡) 𝑦’(𝑡) 

0 1 1 -1 1 -¾ 0 2 1 2 

1 1 1 -1 1 -¾ 0 2 1 2 

… … … … … … … … … … 

 
Fig. 5 shows the simulation result corresponding to the 
qualitative representation in Fig. 4, with adjustments in the 
simulation settings1 to account for changes in the second-
order derivative. These adjustments reveal that transitions 
between states 1, 2, and 3 are now feasible. Specifically, if 
one or both relationships of y with x and z are non-linear, the 
combined effect on δy may depend on specific values. For 
example, consider if the mathematical equation associated 
with the qualitative representation of Fig. 4 is 𝑦(𝑡)  =  𝑥(𝑡)3  +
 3𝑥(𝑡)  −  10𝑧(𝑡). If both 𝑥(𝑡) and 𝑧(𝑡) increase consistently 
(with 𝑥′(𝑡) = 1 and 𝑧′(𝑡) = 1) from −3 to 3, 𝑦(𝑡) initially 
increases, becomes constant, decreases, becomes constant 
again, and finally increases (Fig. 6). This pattern corresponds 
to the transitions along path 3 → 2 → 1 → 2 → 3 as shown 
in the simulation result of Fig. 5.  

Fig. 7 shows a qualitative representation of a causal 
relationship with a positive influence (I+) between x and y, 
with x having quantity space {0, +}. The simulation result 
indicates that x is positive and remains constant, which leads 
to an increase in y (δy > 0). Note that y does not have a 
quantity space. Assuming y increases linearly, the 
corresponding mathematical equation that represents this 
qualitative relationship is 𝑦′(𝑡) = 𝑚 ⋅ 𝑥(𝑡). Given the positive 
influence of x on y, 𝑚 >  0. Furthermore, 𝑥(𝑡)  >  0 and is 
constant. 

Fig. 8 extends the qualitative representation shown in Fig. 
7 by including quantity z with a negative influence (I−) on y, 
and now y has quantity space {−, 0, +}.  

 
1 We differentiate between initial and simulation settings. The 

former refers to starting values (and inequalities) when starting a 

 
Fig. 5. Ambiguous simulation result with transitions between 

states 1, 2, and 3. 

 

 
Fig 6. The combined effect of a nonlinear and linear relationship. 
 

 
Fig 7. Causal relationship of type influence.  

 
The initial settings are such that y is 0, while both x and z are 
positive (+) and constant (δx = 0 and δz = 0). These settings 
introduce ambiguity in the simulation result due to the 
opposing influences: x has a positive effect on y, while z has 
a negative effect, and their relative magnitudes are unknown. 
If the influence of z on y is greater than that of x, y will 
decrease and become negative (path 1 → 5); if the influences 
are equal, y remains at zero (state 2); and if the influence of x 
is greater than z, y will increase and become positive (path 3 
→ 4).  

simulation. The latter refers to characteristics of the reasoning 

engine [12]. 
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Fig. 8. A negative and positive influence acting on y. 

 
Assuming y increases or decreases linearly, the 
corresponding mathematical equations are 𝑦(𝑡 + 𝛥𝑡) = 𝑦(𝑡) +
𝑚1 ⋅ 𝑥(𝑡) ⋅ 𝛥𝑡 for the influence of x on y, and 𝑦(𝑡 + 𝛥𝑡) =
𝑦(𝑡) − 𝑚2 ⋅ 𝑧(𝑡) ⋅ 𝛥𝑡 for z's influence, where 𝑚2 <  0 
indicating a negative influence. Combining these, the overall 
expression for 𝑦(𝑡) becomes 𝑦(𝑡 + 𝛥𝑡) = 𝑦(𝑡) + (𝑚1 ⋅ 𝑥(𝑡) −
𝑚2 ⋅ 𝑧(𝑡)) ⋅ 𝛥𝑡. Here, if 𝑚1 ⋅ 𝑥(𝑡) < 𝑚2 ⋅ 𝑧(𝑡), then 𝑦(𝑡) 
decreases; if 𝑚1 ⋅ 𝑥(𝑡) = 𝑚2 ⋅ 𝑧(𝑡), then 𝑦(𝑡) remains steady; 
and if 𝑚1 ⋅ 𝑥(𝑡) > 𝑚2 ⋅ 𝑧(𝑡), then 𝑦(𝑡) increases. 

Hence, to transition from a qualitative to a quantitative 
model, the mathematical equations that describe the causal 
relationships must be specified. Additionally, the numerical 
values for the parameters of these equations, such as m and b, 
must also be provided. 

4.3 Correspondence and quantity space 

Fig. 9 shows a positive proportional relationship between x 
and y. An increasing exogenous influence is acting on x, and 
x has quantity space {0, +}. Because the quantity space of x 
includes no negative numbers, any equation for which 𝑦(𝑡) is 
increasing within 𝑥(𝑡)  ≥  0 is valid. 

For example, if we assume a linear relationship between x 
and y, then the general mathematical equation 𝑦(𝑡)  =
 𝑚𝑥(𝑡)  ±  𝑏, with 𝑥(𝑡)  ≥  0 and 𝑚 >  0, is valid. If we assume 
a non-linear relationship, then 𝑦(𝑡)  =  𝑥(𝑡)2, is also valid. 
Fig. 10 shows that these two equations are strictly increasing 
in the range 𝑥(𝑡)  ≥  0. Note that 𝑦(𝑡)  =  𝑥(𝑡)2 would not be 
strictly increasing if the quantity space included negative 
values for x. 

Fig. 11 extends the representation shown in Fig. 9, now 
defining quantity spaces {0, +} for both x and y. This 
additional specification for y narrows the scope of the 
proportional relationship between x and y. The initial values 
are set with x at zero (0) and y positive (+). The simulation 
result depicts two consecutive states: In state 1, x is zero and 
increasing, while y is positive and also increasing. In state 2 
(not shown), both x and y are positive and continue to 
increase. 

These initial settings inform the mathematical relationship 
between 𝑥(𝑡) and 𝑦(𝑡). Given that at 𝑥(0) = 0, 𝑦(0) > 0, 
assuming a linear relationship, the general mathematical 
equation would be 𝑦(𝑡) = 𝑚 ⋅ 𝑥(𝑡) + 𝑏, where 𝑥(𝑡) ≥ 0 and 
𝑦(𝑡) > 0. Conversely, if the initial values were 𝑥(0) > 0 and 
𝑦(0) = 0, then the equation would be 𝑦(𝑡) = 𝑚 ⋅ 𝑥(𝑡) − 𝑏, 
with 𝑥(𝑡) > 0 and 𝑦(𝑡) ≥ 0. If the initial values were 𝑥(0) = 0 
and 𝑦(0) = 0, then 𝑦(𝑡) simplifies to 𝑦(𝑡) = 𝑚 ⋅ 𝑥(𝑡). Fig. 12 

displays line graphs illustrating these three mathematical 
relationships. 
 

 
Fig 9. A positive proportional relationship between x and y, 

where x has quantity space {0, +}. 

 

 
Fig. 10. Examples of linear and non-linear relationships between 

x(t) and y(t) in the range x(t) ≥ 0. 
 

 
Fig 11. Both x and y have quantity space {0, +}. The left side 

shows the model and the simulation result of state 1 (in green). 
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Fig. 12. Three mathematical equations corresponding to different 

initial settings. 
 
Fig. 13 shows a qualitative representation where both x and y 
have quantity spaces {−, 0, +} and there is a bi-directional 
correspondence (C) between these quantity spaces This 
correspondence define that if x = − than y = −, if x = 0 than y 
= 0, and if x = + than y = +).  
 

 
Fig. 13. Bi-directional correspondence between quantity spaces. 

 
Mathematically any equation that goes through the origin and 
is strictly increasing is valid. For example, if we assume a 
linear relationship between x and y, then the mathematical 
equation 𝑦(𝑡)  =  2𝑥(𝑡). holds. If we assume a non-linear 
relationship, then 𝑦(𝑡)  =  𝑥(𝑡)3  +  3𝑥(𝑡) is also valid. Fig. 14 
shows that these two equations are strictly increasing. 

4.4 Inequality and calculus 

Fig. 15 shows a qualitative representation with quantity x 
with quantity space {0, +, transition, ++} and quantity z with 
quantity space {0, low, mid, high}. Quantity x has a positive 
influence (I+) on y and quantity z has a negative influence on 
y. The initial value for x is ‘++’ and for y the initial value is 

‘low’. There is an (in)equality (=) between the ‘transition’ 
point from quantity x and ‘mid’ from quantity z. The 
(in)equality provides information about the relative size of 
the influences on y. Given that the value '++' for quantity x is 
above 'transition', and the value 'low' for quantity z is below 
'mid', the impact of x on y is greater than that of z. 
Consequently, the simulation result indicates that y will 
increase. The corresponding mathematical equation is 𝑦(𝑡 +
𝛥𝑡) = 𝑦(𝑡) + (𝑚1 ⋅ 𝑥(𝑡) − 𝑚2 ⋅ 𝑧(𝑡)) ⋅ 𝛥𝑡, with 𝑚1 ⋅ 𝑥(𝑡) > 𝑚2 ⋅
𝑧(𝑡), as also discussed in the accompanying text of Figure 8. 
 

 
Fig. 14. Two strictly increasing equations that go through the 

origin. 
 

 
Fig. 15. An (in)equality between two points. 

 
Fig. 16 shows a qualitative representation where x has a 
positive proportional relationship with y and z has a negative 
proportional relationship with y. Quantity x and z have 
quantity space {0, +} and y has quantity space {−, 0, +}. 
Quantity x has a decreasing exogenous influence acting on it, 
whereas z has a constant exogenous influence acting on it. 
There is a calculus that determines that the value of y is the 
value of x minus the value of z (y = x – z). Initially, both x 
and y are positive (+), with x being greater than y as indicated 
in the inequality history. The simulation result shows 4 
consecutive states. In state 1, x is positive and decreasing, 
while x > z, hence y is positive and decreasing. In state 2, x is 
still positive and decreasing, x is now equal to z (x = z). 
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Consequently, y is zero and decreasing. In state 3, x is 
positive, but x < z, hence y is negative and decreasing. In state 
4, x is zero and steady, thereby y is negative and steady. 
 

 
Fig. 16. A calculus specifies that the value of y is x minus z. The 

grey coloured rectangles show value and inequality histories. For 

the value history the arrows depict direction of change, the values 

are show on the right side, and the state numbers are listed below 

(e.g., x has value + and is decreasing in state 1). The inequality 

history depicts the relationship between two quantities (e.g., x > 

y in state 1, x = y in state 2, etc.). 
 

 
Fig. 17. Lines showing how y(t) changes with x(t) and z(t), both 

added and subtracted. 
 
The corresponding mathematical equation that models the 
calculus of the qualitative representation is 𝑦(𝑡) = 𝑥(𝑡) −
𝑧(𝑡), where 𝑥(𝑡) ≥ 0 and 𝑧(𝑡) ≥ 0, and 𝑦(𝑡) can be any real 
number. Note that δx is decreasing linearly, hence 𝑥′(𝑡) < 0 
and remains constant, while 𝑦′(𝑡) = 0 and remains constant, 
implying that the rate of change of 𝑦(𝑡) is negative (𝑦′(𝑡) <
0). Conversely, if the calculus involved addition, as in y = x 
+ z, then y would always be positive because z remains 
positive and x cannot be smaller than zero. Mathematically, 
if 𝑦(𝑡)  =  𝑥(𝑡)  +  𝑧(𝑡) and both 𝑥(𝑡) and 𝑧(𝑡) are non-
negative, then 𝑦(𝑡) >  0. Fig. 17 illustrates the lines 
corresponding to 𝑥(𝑡), 𝑧(𝑡), and both 𝑦(𝑡) = 𝑥(𝑡) − 𝑧(𝑡) and 
𝑦(𝑡)  =  𝑥(𝑡)  +  𝑧(𝑡). 

5 Dynamics of a falling object as an example 

Fig. 18 shows a qualitative representation of the dynamics 
involved when an object falls and encounters air resistance. 
The quantities include gravitational force (Fg), air resistance 
(Fair), net force (Fnet), acceleration (a), velocity (v), and 
distance (s), each with a quantity space of {0, +}. The net 
force acting on the object is calculated by subtracting air 
resistance from gravitational force (i.e., Fnet = Fg – Fair).  

Gravitational force has a positive proportional relationship 
with net force and air resistance has a negative proportional 
relationship with net force. Acceleration has a positive 
proportional relationship with net force, and there is a 
directed correspondence (C) between the quantity spaces of 
net force and acceleration. Acceleration has a positive 
influence on velocity, which in turn positively influences 
distance. Velocity has a positive proportional relationship 
with air resistance. The initial settings are that gravitational 
force has a constant exogenous influence acting in it, velocity 
and distance are both zero. Acceleration and air resistance 
derive their values by the directed correspondences. 

The simulation of this system with these initial settings 
shows four consecutive states. In state 1, gravitational force 
is positive and steady and air resistance is zero and about to 
increase, resulting in a positive net force (Fnet > 0). This 
positive net force results in acceleration, which in turn causes 
an increase in velocity (δv > 0). As the velocity increases, air 
resistance increases (δFair > 0), which decreases the net force 
(δFnet < 0). In state 2, velocity is positive (+) and thereby 
distance increases (δs > 0) and air resistance is positive (+). 
In state 3, distance is positive (+) and increasing (δs > 0). In 
state 4, air resistance is equal to gravitational force and the 
net force is zero (Fnet = 0). Thereby acceleration is zero (0) 
and velocity is positive (+) and constant (δv = 0). 
 

 
Fig. 18. Qualitative representation of the dynamics involved 

when an object falls and encounters air resistance. Value history 

shows the first and second derivative. 
 
 To transition from the qualitative representation to an 
accurate quantitative model, the mathematical equations, 
along with several initial numerical values for parameters 
need to be set. The mathematical equations corresponding to 
the qualitative representation in Fig. 18, which describe the 
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system of a falling object that encounters air resistance, are 
detailed in Table 2. The differential equations for velocity 
𝑣(𝑡 + 𝛥𝑡) and distance 𝑠(𝑡 + 𝛥𝑡) are linear. The starting values 
of velocity and distance can be directly taken from the 
qualitative representation (𝑣(0) =  0 and 𝑠(0)  =  0). The 
equation for gravitational force, 𝐹𝑔 (𝑡 +  𝛥𝑡), is also treated as 
a differential equation. Typically, in software for numerical 
simulation, 𝐹𝑔 would be considered a constant; however, the 
vocabulary of Dynalearn does not include an ingredient for 
constants. The numerical starting value of gravitational force, 
𝐹𝑔(0), must be explicitly specified, as it remains constant 
within a given interval and its exact value is otherwise 
undefined. In numerical simulations, the parameters mass (𝑚) 
and the gravitational constant (𝑔) are typically used to 
calculate the gravitational force acting on the object (𝐹𝑔 =
 𝑚 ∙ 𝑔). Because 𝐹𝑔 is represented in the model as a 
differential equation but is intended to remain constant, the 
parameter that governs the increase over time should be set 
to zero (𝑐 = 0), ensuring that it does not change. The equation 
for calculating air resistance incorporates several parameters: 
𝐶𝑑 is the drag coefficient, which varies based on the object's 
shape and its movement through the air; 𝜌 represents the air 
density; and 𝐴 denotes the cross-sectional area of the object. 
Additionally, the value of 𝑣(𝑡) is squared within this context, 
reflecting its impact on air resistance as velocity increases. 
 

Table 2. Mathematical equations of the dynamics involved when 

an object falls and encounters air resistance. 

Equations Initial values 

𝑣 (𝑡 + 𝛥𝑡) = 𝑣(𝑡) + 𝑎(𝑡) ⋅ 𝛥𝑡 

𝑠(𝑡 + 𝛥𝑡) = 𝑠(𝑡) + 𝑣(𝑡) ⋅ 𝛥𝑡 

𝐹𝑔(𝑡 + 𝛥𝑡) =  𝐹𝑔 (𝑡) +  𝑐 ⋅ 𝛥𝑡 

𝐹𝑎𝑖𝑟(𝑡)  =  ½ ⋅  𝐶𝑑 ⋅  𝜌 ⋅  𝐴 ⋅  𝑣(𝑡)2 

𝐹𝑛𝑒𝑡(𝑡) =  𝐹𝑔(𝑡)–  𝐹𝑎𝑖𝑟(𝑡) 

𝑎(𝑡) =  𝐹𝑛𝑒𝑡(𝑡) / 𝑚 

 

𝑚 =  .1; 𝑔 =  9.81 

𝜌 =  1.3; 𝐴 =  .05; 𝐶𝑑 =  .3 

𝑣(0)  =  0 

𝑠(0)  =  0 

𝐹𝑔 (0)  =  𝑚 ⋅ 𝑔 

𝛥𝑡 = .1 

𝑐 =  0 

 
Fig. 19 shows the simulation result for velocity per time, 
based on the equations and initial values listed in Table 2. It 
shows that velocity starts at zero and increases, aligning with 
state 1 in Fig. 18. Next, velocity is increases at a decreasing 
rate, corresponding to states 2 and 3, before finally stabilizing 
at a constant value, which corresponds to state 4 in Fig. 18. 
 

 
Fig. 19. Simulation result of velocity per time based on equations 

and initial values of Table 2. 

6 Conclusion and future work 

In this paper, we focus on how the qualitative vocabulary of 
Dynalearn, which is used for describing dynamic systems, 
corresponds to the mathematical equations used in 
quantitative modeling. We demonstrate how qualitative 
relationships can be mapped to linear and nonlinear general 
and differential equations. We also describe how quantity 
spaces and correspondences define the range of the 
mathematical equations. The initial values and inequalities 
set the scenarios in the qualitative representation and provide 
information about the starting values for parameters in the 
mathematical equations. Furthermore, a qualitative calculus 
that specifies operations such as addition or subtraction can 
be expressed through corresponding mathematical equations. 
 Dynalearn serves as a learning tool, and for the integration 
of quantitative modeling, a pedagogical approach should be 
developed to optimize learning. This approach should include 
support functions that assist learners in describing the 
mathematical equations that correspond with the behavior of 
the qualitative model, as learners often find this challenging 
[4, 13]. For instance, the software could automatically 
generate general equations which learners can then edit. For 
example, the differential equations for 𝑣(𝑡) and 𝑠(𝑡) as shown 
in Table 2 could be a derived from the quantitative 
representation in Fig. 18 and presented as the default option. 

Another option is to provide feedback based on whether 
the behavior of the quantitative model aligns with the 
qualitative model. Since an analytic solution is often not 
feasible, analysis of whether behaviors align needs to be 
derived from the simulation result of both models. From the 
mathematical model, we know that there is no ambiguity in 
behavior; all values and changes are determined, and the 
simulation result should at least be a subset of a single path 
of states from the simulation result of the qualitative model. 
Remember, a transition in states in the qualitative simulation 
indicates a change in value or derivative of one or more 
quantities. To detect changes in the results of the quantitative 
simulation, it is necessary to check at each time interval 
whether derivatives change or certain thresholds are reached. 
If discrepancies are identified between the behaviors, 
feedback should be provided. For instance, if the results from 
the quantitative analysis only partially align with a path of 
states and a final state is not achieved, then the simulation 
duration may not have been sufficient to reach those 
subsequent states, or some parameters might need 
adjustment. For example, if the simulation based on the 
equations and initial values listed in Table 2 is run for an 
insufficient duration, the velocity may not stabilize at its final 
constant state. 

With support options in place, the next step is to develop 
an educational approach that optimizes learning in such 
integrated software. For instance, a step-by-step approach 
alternating between qualitative and quantitative modeling, or 
initially constructing a complete qualitative model to 
understand system behavior conceptually before 
transitioning to a quantitative model. Further research on 
optimizing learning in integrated qualitative and quantitative 
modeling software is therefore essential. 
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