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Abstract. Qualitative reasoning models aim to capture how hu-
mans reason about common sense and real-world phenomena, yet
not everyone has the same understanding, and thus underlying men-
tal models of a phenomenon may differ. This paper presents a pro-
cess for reconstructing qualitative models as proxies for capturing
errors in a person’s understanding. Using qualitative simulation mod-
els, we address situations where incorrect predictions are made, indi-
cating gaps or errors in a person’s understanding. Through an abduc-
tive reasoning process, we generate reconstructions of mental models
that could reproduce these faulty predictions by adapting the expert
model to reflect the person’s perspective. Finally, we use the recon-
structed models to formulate contrastive explanations, which aim to
complete their mental model.

1 Introduction
In a conversation about a topic, participants rarely have exactly the
same understanding of that topic. However, human communication is
possible, even efficient, despite these differences in topic knowledge.
This gap is most noticeable in a conversation between a teacher or
expert and a learner.

The learner tries to puzzle out the relationships between the dis-
cussed concepts to build an understanding of the topic discussed. A
good teacher will try to intuitively gauge the understanding of the
student based on their (verbal) responses, to guide the conversation
towards the desired learning outcome, and give relevant explanations.
In other words, the teacher tries to understand the understanding of
the student, asking the question: How did they come to that conclu-
sion?

In this paper, we model this perspective taking using Qualitative
Simulation Models as approximations of human mental models [11].
We assume an expert model on some given phenomenon, as well
as a prediction made by a learner that is not compatible with the
expert model, suggesting that the learner’s conception is incomplete
or misguided. We abduce potential models that explain the faulty
prediction, adapting the expert model to a point where it captures the
learner’s lack of knowledge, or even misconceptions (see Figure 1).

Our approach is based on the foundations of Qualitative System
Identification [28] and Abductive Diagnosis [7], yet does not con-
struct a model from scratch, rather it builds adaptations from a ref-
erence model (the expert model mentioned above). If the learner’s
responses contain sufficient information, the resulting reconstructed
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Figure 1. Overview: explainer (teacher) reconstructing the mental model
of explainee (learner) before answering with relevant knowledge

model variant represents the deviation from the reference model to
the faulty unknown model. Inferences made with the reconstructed
model then provide insight into what information needs to be pre-
sented to correct the faulty mental model and inform the learner.

Other approaches focus on models to learn qualitative behaviour
from observations of systems, but here we are interested in articulate
qualitative models that more closely resemble consistent human rea-
soning [12]. Reconstructing provides us with an interpretable model
that can be used to assess the knowledge of the learner, generate
hints, or, as will be discussed in Section 4, informs the generation
of contrastive explanations [21, 15].

Furthermore, when considering a faulty physical system instead of
a learner’s misconception, the reconstructed model is a strong fault
model for the device [7].

Running Example (Seesaw I). Consider the physical system of a
seesaw. A student is asked to predict the behavior of the seesaw. He
correctly states that it will tilt towards the heavier object w1 (Fig-
ure 2a). The student is then told that an additional object w3 of dif-
ferent weight is placed next to the lighter object w1 such that the
combined weight of w2 and w3 equals the weight of w1 (Figure 2b).
The student predicts that this will balance the seesaw, which is incor-
rect.
Before providing an explanation, the teacher considers where the stu-
dent’s reasoning went astray, concluding it stems from either a lack
of understanding of how the added object affects the center of mass
or how it alters the lever’s force.
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Figure 2. Seesaw configurations

2 Preliminaries & Related Work
The physical world can be described and reasoned about using pre-
cise mathematical equations and numerical information. However,
humans tend to use qualitative information to reason and discuss phe-
nomena of physical systems, reasoning and formulating qualitative
arguments such as cause-effect relationships to convey the behavior
of a phenomenon or system.

2.1 Qualitative Simulation Models

A perfect simulator would require complete knowledge of a situation
and its dynamics. However, when dealing with verbal responses and
mental models, we typically lack both. Instead, we must work with
incomplete information and descriptions of multiple possible futures.

We build on Qualitative Differential Equations (QDE) as intro-
duced by Kuipers [19]. QDE reduce a domain’s quantitative con-
straints by representing only qualitative behavior, which is often
more comprehensible and articulate than exact numerical represen-
tations.

Humans tend to base explanations on causal processes between
physical entities, a model remains consistent with the domain’s con-
straints but is more articulate by representing the cause-effect rela-
tionships between quantities in a comprehensible manner [12]. These
relationships conceptually mirror human reasoning, reflecting how
arguments about systems are phrased [8]. Explicitly modeling quan-
tities and their qualitative causal relationships creates a Qualitative
Simulation Model that can predict and explain system behavior using
qualitative representations of differential equations and monotonic
functions.

We follow the graphical realization of these models implemented
in the Garp3 modeling toolkit [4]. The models are composed of In-
gredients:

A qualitative simulation model is represented as a graph QM =
⟨Q,P⟩, where:

• Q is a set of nodes representing Quantities associated with physi-
cal entities, with elements q1, . . . , qn ∈ Q.

• P is a set of (directed) edges representing Processes, which indi-
cate causal dependencies between quantities.

Additionally, qualitative models can incorporate observations OBS,
here we consider observed values of quantities or the relations be-
tween them.

Quantities Q can occupy a range of values expressed through a
range of coarse mappings to a domain D(q), q ∈ Q called quantity
spaces. At any given discrete time point ti where 1 ≤ i ≤ h ∈ N,
each quantity q has a value val(q, ti) ∈ D(q) and a derivative
δ(q, ti) ∈ {−, 0,+}. The derivative indicates the trend of the quan-
tity at the next time point ti+1.

Processes P are labeled edges between two quantities qi, qk, tak-
ing the role of causal dependencies and determining the result of a
simulation by constraining and influencing the values of the quanti-
ties. Between a quantity qi and a target quantity qj , causal dependen-
cies take the form of Influences I±(qi, qj), which cause the target

quantity qj to change its derivation based on the magnitude of qi,
Proportionalities P±(qi, qj) operating as indirect influences prop-
agating the effect of a process from qi, to qj , and Correspondences
Q(qi, qj), where the magnitudes of quantities correspond. In addi-
tion, a quantity can act as an auxiliary variable and be related to val-
ues calculated from other quantities using a Calculation here limited
to multiplication and subtraction denoted by operations qi ∗ qj = qk
and qi − qj = qk, respectively.

The dynamics of the simulation are determined by influences, pro-
portionality, correspondences, etc., where causal dependencies deter-
mine the derivative δ(q, ti) and the value val(q, ti) of each quantity.
The collection of all derivatives and values at a given time point is
called State s. A sequence of states modeled by the qualitative sim-
ulation model is called Scenario π.

Observations are concrete values obtained, for example, by mea-
suring quantities or through a verbal description of a scenario we
wish to simulate. A qualitative simulation can be constrained by As-
sumptions made about the configuration of the system. Inequalities
{>,=, <} between quantities are used to enforce constraints in the
form of a relative position on a quantityspace, they can be enforced
as constraints, or their truth values can act as additional observations
to a scenario. A model constrained by an assumption must realize it
at a specified time during the simulation (postdiction).

Finally, given an initial state s0, a qualitative simulation model
yields a State Graph Π consisting of states and transitions between
these states. By traversing the graph, every possible simulation out-
come (scenario) can be obtained. Thus, given a set of assumptions,
there is a state sub-graph, which only includes scenarios consistent
with the observations. If there is not a single state within the sub-
graph, then the qualitative simulation admits to no consistent sce-
nario, and we speak of a contradiction.

Running Example (Seesaw II). Consider the seesaw in Figure 2a,
with a central pivot point and two loaded arms with weights. The an-
gle α of the seesaw, as well as the load w1, w2 and position d1, d2
of the weights are represented as quantities and relations and can
be observed, e.g., w1 > w2. Finally, the lever force is not directly
observable, but can be determined, represented here by f1, f2 press-
ing down on the respective sides. Figure 3 shows a graphical rep-
resentation of an expert QM which realizes the dynamics of the
seesaw, by considering the lever effect with f1, f2, which influence
I+(f1, α), I

−(f2, α) the angle of the seesaw, as edges between the
quantities.
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Figure 3. Qualitative Model of a Seesaw depicted in Figure 2a

In the scenarios of this models simulation, the quantities w, d, and
f remain unchanged with a positive value each. Starting from a bal-
anced seesaw in the initial state s0, the scenario π is generated such
that val(α0, t0) = 0, δ(α0, t0) = 0 ⊂ s0 | s0 ∈ π. The force f1
exerts a stronger influence than f2, because the weight w1 of the left
object is heavier and f is calculated by w ∗ d = f . This causes a



transition in the seesaw’s state to δ(α, t1) = +. This results in an
update of val(α, t1) = 0 to val(α, t2) = +, indicating that when t2
is reached, the seesaw is tilted to the left, with a positive angle. Even-
tually, the magnitude of the quantity α will converge to the maximum
value val(α, tn) = max.

2.2 Qualitative Model Abduction

A System Identification Problem is the process of using observations
to understand the underlying structure of a system. This can be used
to post hoc interpret the way a system works by reconstructing it as
a model [1].

We speak of Qualitative System Identification, when we use quali-
tative modeling and observations to abduce a model that explains the
behavior of the observed systems automatically [28].

For Qualitative Differential Equations (QDE), which model the
dynamics of a system as a conjunction of qualitative constraints, the
term QDE model learning (QML) refers to the inverse of qualitative
simulation. Instead of predicting an outcome, in QML a model is
induced from observation [23]. QDE model learning has been used
to learn form observations of a physical target system. In qualita-
tive reasoning, most automatic model construction approaches try to
generate models that describe the behavior of the system using quali-
tative differential equations [29]. In general, they follow an abductive
principle of hypothesis generation and pruning of inconsistent mod-
els. The approaches include GENMODEL [6], QSI [28] and MISQ
[26]. Others rely on Inductive Logic Programming (ILP) [22] as a
framework for model synthesis, also benefiting from the available
systems to learn from both positive and negative examples [3, 5].

Abduction is the inference to the best explanation. While QED
capture the qualitative dynamics of a system, they do not have the
same articulate power as an explicit representation of processes and
causal dependencies [12]. When reconstructing models from obser-
vation to understand erroneous behavior, we speak of abducing a
qualitative model [17]. For the qualitative simulation models QM
repesented by graphs, we can formally specify the problem as a gen-
eral inductive problem [22]:

Definition 1 (Qualitative Model Abduction Problem). Given obser-
vations OBS and the dynamics of qualitative simulation S, recon-
struct a modelQM ⊆ LQM by induction from a language of possi-
ble ingredients LQM. The goal is to findQM such that:

S ∪QM ⊢ OBS (1)

In other words, we abduce a qualitative model QM that in accor-
dance with the governing simulation rules S can reproduce the ob-
servations OBS that arise from a dynamic system under observation.
The constructed model thus is said to justify the observations.

Precise parameterized models are hard to learn because of infinite
possibilities in parameter assignments. Qualitative models abstract
from these mathematical details, yielding only finite possibilities.
They are easier to learn and can capture the dynamics of the sys-
tem while remaining comprehensible. However, naive construction
can lead to under- or over-constrained models, potentially causing
faulty predictions [5].

2.3 Diagnosis

Conceptually reconstructing a model for a system that deviates from
expected behavior can be framed as a Diagnosis Problem [25], where

we search for a diagnosis ∆ as a set of abnormal components to
explain and ultimately repair faults within the system.

Definition 2 (Diagnosis Problem Instance). A diagnosis problem
instance consists of a triple, ⟨SD,OBS,COMP⟩
• system description (SD) , specifying the behavior and structure;
• a set of observations (OBS) on the system as facts;
• a set of constants ci, representing the components (COMP).

The dominant approach to Model-Based Diagnosis is called
Consistency-Based Diagnosis and has been successfully applied to
Qualitative Simulation Models in [8]. Consistency-Based Diagnosis
characterizes the behavior of a faulty component using only a binary
label to indicate whether a component is abnormal or ok, forming
sets of abnormal components, the diagnoses ∆ [25].

When so-called strong fault models are available, the abductive
approach to diagnosis can be used [7, 24]. Here the behavior of the
faulty components is modeled in the diagnosis ∆ and justifies the
observations, such that

SD ∪∆ ⊢ OBS,

SD ∪∆ is consistent
(2)

These fault models are however not easily obtained, as they gener-
ally rely on expert knowledge or existence of a bug-catalog. If a sys-
tem description guarantees that even abnormal components operate
on values confined to a specified domain (such as a quanitity space)
constraints can be enforced. These constraints can be used to infer
potential input-output behaviors even in the absence of an explicit
strong fault model [2].

In a simulation, these reconstructed input-output values are placed
between each state transition but are fundamentally governed by the
dynamics of the system model. Finally, we want to point out that
reconstructing the simulation model as the generator of these states
can potentially also be revealing for diagnostic purposes.

3 Reconstructing Faulty Simulation Models
A qualitative simulation model is faulty if it cannot reproduce the
behavior of an observed phenomenon. When representing something
as illusive as the mental model of a learner, this qualitative simulation
is rather abstract and hidden. From now on, we refer to this abnormal
and hidden model as the learner model Q̃M.

Presumably, for any observed phenomenon, there is a perfect
model which captures exactly the dynamics required; we will refer
to this correct model as the reference modelQM.

In our method, we start from an informed model and regress it
by inducing model ingredients which explain a prediction made by
an uninformed model. The resulting model is a reconstruction Q̂M,
which acts as an approximation of the uninformed model.

More formally, we perform an abductive diagnosis, by reconstruct-
ing the model form a language of ingredients LQM such that:

S ∪H ∪ (QM\R) ⊢ OBS, (3)

S ∪H ∪ (QM\R) is consistent (4)

|H ∪R | is minimal (5)

where R ⊆ QM, H ⊆ LQM and Q̂M = H ∪ QM \ R. Recon-
structed models Q̂M are instances of the language power set LQM,
P(LQM). The parsimony principle modeled in Equation 5 favors
reconstructions to be close to the reference modelQM.



Intuitively, we adapt the reference model by retracting (R) and hy-
pothesizing (H) model ingredients to account for the observations. In
this context, observations OBS are not derived from measurements
of the physical world. Instead, they are the products of predictions
made by Q̃M (by the learner), which provide partial descriptions of
states. These observations are presented as values or truth values of
relationships of quantities.

The problem of constructing a consistent model from an empty
reference Model QM where P = ∅ is identical to the qualitative
model abduction with Equation 1.

Running Example (Seesaw III). Consider the seesaw from Fig-
ure 2b. We can reuse the reference model from Figure 3a substituting
with w23, d23 and f23, the configuration is depicted in the Figure 4
below. This presumes that the learner did not make a mistake inter-
preting the scene.
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Figure 4. Qualitative Model of a Seesaw depicted in Figure 2a

A learner’s prediction like “the seesaw will be balanced” can then
be stated as an observation on their hidden learner model Q̃M. An
observation is a partial state description {val(α, tn) = 0}. This is
underconstrained, a more restrictive interpretation of the utterance
is ∀0 ≤ h ≤ n : ¬(val(α, th) ̸= 0) , denoting the constraint that
no state in this scenario may ever have an unbalanced seesaw. A
model that reconstructs this, while also realizing the scenario without
the additional object, is depicted in Figure 4b. Note that α is not
influenced by the forces, but directly by the weights.

3.1 Model Adaptation Language

The reconstructed model is derived using a transformation language
LQM. During the adaptation, we do not consider adding auxiliary
quantities to the reconstructed model. Instead, the adaptation lan-
guage LQM consists of the processes P described in Section 2.1.
This ensures that the potential adaptations expressible with LQM
are finite.

Formally, the language is constructed from graph edit operations
on the model ingredients performed on QM. Here, these operations
are limited to edge insertion, hypothesize a process between quanti-
ties, and edge deletion, retracting a process from the reference model.

Listing 1. Extended Backus–Naur form (EBNF) for Adaptations

<q> ::= q ∈ Q

<adaptation> ::= <edit> " " <adaptation>
| <edit>

<edit> ::= "delete" "(" <ingredient> ")"
| "insert" "(" <ingredient> ")"

<ingredient> ::= <process>
| <correspondence>

| <calculation>

<process> ::= "I" <sign> "(" <q> "," <q> ")"
| "P" <sign> "(" <q> "," <q> ")"

<correspondence> ::= "C(" <q> "," <q> ")"
| "C−1(" <q> "," <q>")"

<calculation> ::= <q> "*" <q> "=" <q>
| <q> "-" <q> "=" <q>

<sign> ::= "+" | "-"

Listing 1 presents a grammar for generating sequences of graph
edits, representing setsH for insertions andR for deletions. A person
who incorrectly assumed some causal dependency might have what
is referred to as a misconception, which here is represented as the set
H . However, failure to apply some knowledge is modeled as R.

If more involved edit operations are used, the minimality con-
straint on the model adaptations in Equation 5, can be revised using
graph edit distance GED [27] between the reference and the recon-
structed model such that:

min
qm∈P(LQM)

GED(QM, qm) (6)

We are motivated to abduce models that minimize the edit dis-
tance to a reference model during reconstruction, since conceptions
of learners in a learning situation is usually guided, also in the con-
text of QM [18]. Misconceptions that deviate stronger from the in-
tended reference model are possible, especially when learners rely on
their intuition from past experiences and expertise in other domains
[30, 8]. As such, the edited distance proposed here acts as one of
many potential heuristics to find a good reconstructed model. For ex-
ample, another heuristic might be informed based on the analogical
reasoning and related knowledge the learner might possess [13].

4 Conversational Explanation
Abduction as the inference to the best explanation of an explanan-
dum is only part of the explanation process. An explanation is funda-
mentally contextual, as it serves as a response to a question within a
specific context [31]. In the conversation between the explainer and
the explainee, this context is largely the epistemic state of the parties.

There are many aspects that factor into how humans converse, such
as quality, quantity, and manner [14].

There are many aspects of how people converse that are summa-
rized in Grice’s Maxims of Conversation, such as ensuring that what
is said is true (quality), that what is said is only as informative as nec-
essary (quantity), and that statements are clear and understandable to
the receiver (manner) [14]. Here we want to focus on the relevance
of the logical content of a possible explanation in order to expose
information for the repair of the explainees epistemic state.

4.1 Contrastive Explanation

Explanations in conversation are formulated against Why-questions.
However, explainers will refrain from exposing unnecessary infor-
mation and instead formulate an answer against an implied counter-
factual alternative, which can also be made explicit by explainee as a
“Why explanandum (ϕ) rather than foil (ψ)”-question. A response to
such a question is called contrastive explanation [16].

A faulty prediction by a learner establishes a natural contrast to the
informed prediction. A prediction from a learner that states ψ, acts



as a counterfactual that stands in contrast to the actual true answer
ϕ. Furthermore, since the learner had to generate the utterance from
an epistemic state, the foil ψ also acts as an observation OBS and a
basis for abduction of said epistemic state.

4.2 Explanations from Qualitative Simulation Models

The generation of intuitive explanations is one of the main concerns
of qualitative models [10]. Since causal dependencies are modeled
explicitly and are fundamental to the simulations dynamics, a simu-
lator can also track the inferences made to reach a state, leading to a
causal chain. Without special points of focus on these chains, the ex-
planations naively will retrace the inference from initial state to the
explanandum. Here we want to adapt the computational models of
contrastive explanation from causal models [21] and logic programs
[9], to fit Qualitative Simulation Models.

Definition 3 (Explanation Frame). An Explanation Frame F =
⟨QM, s0, S,LQM⟩ where

• QM is a reference model,
• s0 a (partial) starting state,
• S the set of shared knowledge, and
• LQM the language for the hypothesis space.

Definition 4 (Contrastive Explanation Problem). Given an explana-
tion frame F = ⟨QM, s0, S,LQM⟩, a corresponding Contrastive
Explanation Problem is a P = ⟨π, ϕ, ψ⟩ where

• π is a scenario ofQM representing the actual prediction ofQM,
• ϕ ⊆ π is the explanandum, and
• ψ represents the foil with ψ ∩ π = ∅.

We use the foil ψ as an observation OBS for the reconstruction of
Q̃M, we obtain a reconstructed model Q̂M as outlined in Section 3,
as well as the divergence form the reference model as H ∪ R =
Q∆, in practice multiple responses could be considered to improve
the reconstruction. We collect the sets of causal dependencies and
causal inferences Qϕ and Qψ that contributed to S ∪ QM ⊢ ϕ and
S∪Q̂M ⊢ ψ respectively. BothQϕ andQψ are causal-explanations,
using inference rules of the Qualitative Simulation, composed out of
the state transitions with reference to the used model ingredient. For
example, a simulation rule of S using a Influence-Ingredient.

The rule given in R1 below shows how the presence of a positive
influence I+ between two quantities q1 and q2 possibly changes the
derivation of q2 from one to the next time point. Conceptually, the
model ingredients act as toggles of specific instantiations of rules
within the logic program.

δ(q2, i,+)←

I+(q1, q2),

δ(q1, i− 1, δi−1), val(q1, i− 1, v), v > 0.

(R1)

If R1 is used during the simulation we record the model ingredient
as a justification, indexed by the time point of use in Qϕ, Qϕ respec-
tively.

Running Example (Seesaw VI). A simulation spanning timepoints
t0, t1 and t2 starting with {val(α, t0) = 0, w1 > w2} ⊂ s0 with
weight placed as depicted in Figure 2a on a neutral seesaw, realizing
the explanandum ϕ = {val(α, t2) = +} cites Qϕ = {I+(f1, α)t0}
as an explanans, as an application of Rule R1.

Finally a contrastive explanation can be obtained by contrasting both
of the explanations Qϕ and Qψ as defined in [9].

Definition 5 (Contrastive Explanation). A counterfactual expla-
nation ⟨Qϕ, Qψ, Q∆⟩ for an explanation frame F is made con-
trastive ⟨Cϕ, Cψ, C∆⟩ only when considering deviations and exclud-
ing shared knowledge S.

• Cϕ = Qϕ \ (Qψ ∪ S)
• Cψ = Qψ \ (Qϕ ∪ S)
• C∆ = Q∆ \ S

The parts of the contrastive explanation ⟨Cϕ, Cψ, C∆⟩ here denote
the root-cause C∆ of the faulty inference made by the explainee, and
the resulting divergence in their reasoning Cψ . The explanation car-
rying the information for a repair of the explainee’s understanding is
Cϕ, outlining the explanation of the reference model QM, reduced
to the relevant inferences Q̂M could not make due to the divergence.

A conversational verbalization of the contrastive explanation
could, for example, cite the root cause C∆ and give the retracing
of actual inferences of Cϕ.

5 Experiment
We have implemented qualitative simulations using graph models in
Answer Set Programming as a prototype, where the dynamics of
the simulations is encoded in rules such as R1 in a logic program.
The implementation can generate scenarios, complete partial states to
complete states, and generate a full state graph using brave enumer-
ation, realizing prediction, postidiction and causal reasoning [12].

To illustrate the results of this approach, we will give a example
used in education, where a faulty prediction will prompt reconstruc-
tion and explanation of the discrepancy.

Although dedicated ILP tools are available for learning answer set
programs such as ILASP [20], they do not scale to the search space
required for the full reconstruction of Q̂M yet. For this example, we
limit the adaption language LQM to only consider edge deletions.

5.1 Balance Domain

The following example shows a revised version of deKonning and
Bredeweg’s balance system [8] implemented as a graph model. The
original version applied model-based diagnosis to diagnose the rea-
soning steps taken by a learner to generate feedback. With the use of
a reconstructed articulate model and inherent explanation, we want
to build on that.
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Figure 5. Balance with filled containers in initial configuration with water
level (L), volume (V ) and width (W ). And auxiliary values that are not

apparent from the static image, such as flow (F ). Relative and qualitative
values are made explicit here, including the angle of balance

angle ∈ {left , neutral, right}

Consider the sketch shown in Figure 5 of a balance scale with two
full containers. From the picture, we can make qualitative observa-
tions, such as comparing the water levels of the containers (c), or



Table 1. Partial valuations of scenarios of the quantities and relations from qualitative simulation of Figure 5. An actual scenario (left) according to the
qualitative model. A counterfactual scenario (right) that accounts for an observation VL = VR for all timepoints t

QM-Scenario Q̂M-Scenario
t0 t1 t2 t3 t0 t1 t2 t3

VL 1,→ 1, ↓ 0,→ 0,→ 1,→ 1, ↓ 0,→ 0,→
VR 1,→ 1, ↓ 1, ↓ 0,→ 1,→ 1, ↓ 0,→ 0,→

VL × VR = = > = = = = =
LL × LR < < < = < < = =
FL × FR < < < = = = = =
PL × PR < < < = = = = =
WL ×WR > > > > > > > >

qualitatively determining whether the scale (b) is tilting left or right.
Opening the valves sets in motion a chain of events: the mass (m) of
the containers, which depends on the volume (V ), which depends on
the water level (L), which regulates the pressure (p), which regulates
the outflow (f ), which influences the volume, which influences the
outcome of the scales (pos).

As an example, we formulate an utterance from a student recorded
in [8]. The student had been asked about the situation in Figure 5
where the containers start with the same volume: “Both valves are
opened simultaneously. How will the volumes behave?”.

The right-hand side, will have faster outflow, but a wrong pre-
diction that does not consider the pressure within the containers
could be: “The volumes of the remaining water will decrease equally,
staying in the same relation.” The answer suggests an observation
VL = VR for all time points t1, . . . , tn and both δVL and δVR are
negative. This cannot be achieved by any scenario within the state
graph of QM. Adaptations are searched to find a reconstruction
Q̂M.

By contrast, the reference model QM can predict the actual out-
come, “The volume of the right containers will empty faster”.
Framing this exchange as a Why-Rather-Than-Question, we get:
“Why will the volume of the right containers decrease more quickly,
rather than both decreasing equally?”.

Among the minimal sets of deletion edits made to QM to
generate Q̂M which models the student’s utterance are R1 =
{C(p, f)}, R2 = {C(l, p)}, both adaptations can lead to a scenario
outlined in Table 1. Either C(l, p), the student has not considered the
correspondence between the water level (l) and the pressure (p), or
C(p, f), they have not considered the correspondence of pressure (p)
on flow out (f ). The contrastive explanation obtained from the model
where C(l, p) is retracted is as follows:
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Figure 6. Qualitative Simulation Model excerpt of right container (c) as
reference model QM. Q-nodes denoting correspondences, dotted lines

conditionals and white node quantities

Cϕ = {C(l, p), C(p, f), C(lR, pR)t2 , C(pR, fR)t2}

Cψ = {C(vL,mL)t2 , I
−(mL, pos)t1 , I

+(mR, pos)t1}
C∆ = {C(l, p)}

The indexed items, reference states within the scenario that the
simulation generated (see Table 1). Interpreting the logical content
of the explanation could yield the following, starting with the root-
cause: The right container’s volume decreases quicker, because the
water pressure corresponds to the water level (C(l, p)). At some
point (t2), the outflow from the right container is larger than from the
left container (FL < FR), because the right container has a higher
water level (LL < LR), and pressure and outflow are proportional
(C(p, f)).

5.2 Limitations & Future Work

Currently, our system does not realize learning from negative exam-
ples efficiently. Unlike the observation of a physical system, where
only positive examples are produced, a human utterance can, in fact,
carry information about a negative example, or be implied, as we
have shown in the running example. Comparable general systems
such as ILASP implement learning from negative examples using
cautious consequences, but these systems are not scalable to the task
of reconstructing a qualitative simulation model in a graph represen-
tation, as we have learned.

The constraint in 4 regarding inconsistencies of reconstructed
models might not be realistic when it comes to human reasoning,
as human reasoning often uses heuristics or accepts inconsistencies
in order to act faster. An appropriate suspension of this constraint
must be investigated in the future.

To handle the reconstruction of larger models, future work will
invest in a dedicated method for abduction models, benefiting from
advances in the field of constraint and inductive logic programming.

6 Summary & Conclusion
Explanation is the process of resolving a puzzle in the explainee’s
mind by filling gaps in their knowledge. However, each individual’s
mind is unique and not directly observable. Nevertheless, much like
observing a system, the questions and answers provided by the ex-
plainee can serve as indicators of their flawed mental model.

In this work, we tackled the challenge of reconstructing qualitative
model variations from responses to provide effective conversational
explanations. Qualitative Simulation Models have been emphasized
as a useful tool for addressing inconsistencies in predictions and cap-
turing the way humans articulate their reasoning about processes. Us-
ing abductive and inductive reasoning, we can construct qualitative
models from faulty predictions. This involves reconstructing mental



models that adapt expert models to reflect the learner’s perspective.
This approach aims to bridge the understanding gap between teach-
ers or experts and learners, ultimately improving learning outcomes
and facilitating more effective explanations.

Additionally, the use of contrastive explanations formulated with
the reconstructed models helps to complete the understanding of a
person’s mental model. By framing explanations in terms of Why-
Rather-Than-Questions, we can gain insights into the reasoning be-
hind different perspectives. This method provides a deeper under-
standing of the explainee’s thought processes and helps tailor expla-
nations to address specific misunderstandings.
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